
Generating 1/f Noise Sequences as Constraint Satisfaction: The Voss Constraint

François Pachet1,2 and Pierre Roy1 and Alexandre Papadopoulos1,2 and Jason Sakellariou1,2

1SONY CSL, 6 rue Amyot, 75005 Paris
2Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

pachetcsl@gmail.com, roy@csl.sony.fr, alexandre.papadopoulos@lip6.fr, jason.sakellariou@lip6.fr

Abstract
Many natural phenomena exhibit power law spec-
tra. In particular, so-called 1/fα noise series with
α close to 1 (also called pink noise) occur in
sound, music and countless human artifacts or nat-
ural events, from the fluctuations of the flood lev-
els of the Nile to movements of the stock mar-
ket. As a consequence, many generative models
for 1/f noise have been designed to produce series
that look or sound “natural” or “human”. In this
paper, we formulate the generation of 1/f series
as a hard constraint satisfaction problem, so that
1/f noise generation can be used as an add-on to
arbitrary sequence generation problems. We take
inspiration from a simple yet beautiful stochastic
algorithm invented by Voss and introduce the Voss
constraint. We show that Voss’ algorithm can be
modeled as a tree of ternary sum constraints, lead-
ing to efficient filtering. We illustrate our constraint
with a melody generation problem, and show that
the addition of the Voss constraint tends indeed to
produce sequences whose spectrum have a 1/f dis-
tribution, regardless of the other constraints of the
problem. We discuss the advantages and limitations
of this approach and possible extensions.

1 1/f noise in nature and human artefacts
Many natural phenomena have been shown to exhibit so-
called 1/f fluctuations, such as fluctuations of river flood-
ing or luminosity of stars [Mandelbrot, 1982]. Such fluctu-
ations have also been observed in human artefacts, such as
fluctuations in rhythm [Hennig et al., 2011], or music [Voss
and Clarke, 1975]. 1/f fluctuations have also been shown
to be ubiquitous in human cognition (see, e.g., [Farrell et al.,
2006a; 2006b]).

1/f noise, also called pink noise, is defined by a power law
relation between the frequency f of a signal and its power
spectral density S(f) :

S(f) ∝ 1/fα, with α ≈ 1

The ubiquity of 1/f fluctuations has therefore been used
to enhance artificial artefacts, to make them look or sound

Index Blue Green Red Tossing
0 0 0 0 All dice are tossed
1 0 0 1 Red is tossed
2 0 1 0 Green and Red are tossed
3 0 1 1 Red is tossed
4 1 0 0 All dice are tossed
5 1 0 1 Red is tossed
6 1 1 0 Green and Red are tossed
7 1 1 1 Red is tossed

Table 1: Voss’ dice tossing scheme for producing 1/f series.
At each row, we produce a random number between 3 and 18
by summing the three 6-sided dice.

more natural or more human. For instance, [Hennig et al.,
2011] introduce 1/f fluctuations in computer-generated mu-
sical rhythms to make them sound less artificial, and show
experimentally that these subtle differences are indeed per-
ceived and preferred by humans. Similarly, 1/f noise is often
used to make images or textures more natural, see e.g., Perlin
noise [Perlin, 1985]. Many algorithms have been designed
to generate pink noise series (see, e.g., [Kasdin, 1995]), but
these algorithms are always designed as self-contained black
boxes. As a consequence, it is difficult to generate 1/f series
that satisfy simultaneously additional properties.

Figure 1: A 1/f series generated by Voss’ algorithm.

The striking result obtained by [Voss and Clarke, 1978] is
that 1/f pitch sequences sound more natural than sequences
obtained with other distributions (random, Brownian). How-
ever, most music examples of 1/f sequences exhibited in the
literature do not satisfy other basic properties of music such
as meter, harmony, or higher-level structure. For instance, the
melodies generated in [Voss and Clarke, 1978] do not con-
tain bars, i.e., are not metrically correct: 1/f noise is a global
property that is not easily combined with other properties. In
that case, generating sequences that fulfill metrical properties

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

2482

is in itself a difficult combinatorial problem [Roy and Pachet,
2013]. In the context of sequence generation, it is therefore
natural to look for an 1/f global constraint, which can be
added to other arbitrary constraints, in the framework of con-
straint satisfaction. The goal of this paper is to propose a sim-
ple way to do so in the context of hard constraints, by taking
inspiration from an algorithm proposed by physicist Richard
Voss and popularized by Martin Gardner in [Gardner, 1978].
Like Voss’ algorithm, the scheme we propose does not solve
the problem in its full generality, but provides a simple and
elegant solution to the issue of 1/f sequence generation. Be-
fore describing this algorithm and its formulation as a con-
straint satisfaction problem, we review the state-of-the-art in
global constraints dealing with distributions.

Algorithm 1: Voss’ algorithm as described by Gardner.
Input: N a sequence length, nbDice a number of dice,

maxDice the maximum dice value
Output: A sequence of N values in

[nbDice,nbDice.maxDice] with a 1/f
spectrum

result ← new integer array of length N
diceValues ← new integer array of length nbDice
for i = 0, . . . , N − 1 do

for d = 1, . . . ,nbDice do
if (dth bit of i) 6= (dth bit of i− 1) then

// toss die number d
diceValues(d)← Random integer

in [1,maxDice]

// sum all dice

result(i)←
∑nbDice
k=1 diceValues(k)

return result

2 Related work

The spread constraint [Pesant and Régin, 2005] ensures that
the values in a sequence have a given mean and standard devi-
ation. Similarly, the deviation constraint [Schaus et al., 2007]
ensures that values of a set of variables have a given standard
deviation. The balance constraint [Beldiceanu et al., 2007]
bounds the difference in the number of occurrences of val-
ues assigned to variables. No constraint, to our knowledge,
deals with more complex distribution of values, in particu-
lar taking into account the spectrum of the sequence (seen as
a time series). Indeed, the spectrum of a time series is ob-
tained through a complex operation (the Fourier transform),
and, to our knowledge, no Spectrum constraint has yet been
proposed. Recently, the idea of encoding statistical systems
as constraint optimization problems has emerged, notably for
Markov chains [Morin and Quimper, 2014; Pachet and Roy,
2011] and neural networks [Lombardi and Gualandi, 2013;
Bartolini et al., 2011]. This work can be seen as yet another
bridge between stochastic algorithms and finite-domain, dis-
crete constraint satisfaction.

��

����

��

����

��

����

��

����

��

�� ���� �� ���� �� ���� ��

�
��
�

�

α�����

Figure 2: The spectrum of a time series generated with Voss’
algorithm is in 1/f .

3 Voss’ algorithm
In our case we do not need to control the spectrum of a se-
quence precisely but only to enforce a specific, global prop-
erty of the spectrum. The seminal paper [Gardner, 1978] de-
scribed a simple algorithm to generate 1/f sequences, i.e.,
sequences of integers having a spectral density in 1/f . This
algorithm, invented by Voss but never published to our knowl-
edge, consists in using a number of dice and summing their
values, exploiting the fact that 1/f series can be modeled as
sums of random variables with specific correlations. At each
step, only certain dice are tossed: those who correspond to a
bit change when writing a sequence of integers in base 2. As
a consequence, it can be seen easily that in the resulting se-
quence the variance is inversely proportional to the frequency,
due to the fact that some dice stay unchanged over longer pe-
riods than others. The algorithm is described in Algorithm 1
and the dice tossing scheme is illustrated in Table 1. Three
6-sided dice are considered, represented by 3 colors (Blue,
Green, Red) to generate a sequence of 8 values. Each line
represents an integer, from 0 to 7 written in base 2. The num-
bers of the sequence are obtained by summing up the values
of the three dice at each line. The trick is that only dice corre-
sponding to a bit change with respect to the previous line are
tossed.

X1

D1,1 D1,2

D2,1 D2,2 D2,3 D2,4

D3,1 D3,2 D3,3 D3,4 D3,5 D3,6 D3,7 D3,8

X2 X3 X4 X5 X6 X7 X8

sum

Figure 3: A tree of n-ary sum constraints implements the Voss
constraint, here for a sequence length of 8 and 3 dice. Vari-
able Di,j represents the jth toss of die i.

Voss’ algorithm generates 1/f series, or at least a very
good approximation thereof. We can show it by estimating
the power spectral density using S(f) = 1/T |X(f, T)|2,
where X(f, T) =

∫ T
0
x(t)e−iftdt is the Fourier transform

2483

of the sequence. We then perform a simple linear regression
in the log-log spectrum in order to obtain the slope −α. Such
a series is illustrated in Figure 1, and its log-log spectrum in
Figure 2, which is well approximated by a straight line, at
least for values larger than a threshold (−2.5).

4 The Voss constraint
Voss’ algorithm is a statistical one, and cannot be, as such,
translated easily into a hard constraint satisfaction problem.
However, the decomposition of 1/f series as sums of random
variables can lead to a simple representation as a set of con-
straints, in combination with a random heuristics for variable
value choice. The idea is to consider both sequence elements
and dice as constrained variables and relate them through a
set of sum constraints [Trick, 2003].

The Voss constraint can be posted on sequences of size
N = 2K , whose elements have a domain of the form D =
[K ,K .R], with R a positive integer. The Voss constraint en-
sures that the values of the variables could have been obtained
by tossing dice according to Voss’ algorithm presented above,
with parameters N , K for nbDice and R for maxDice.

We first present a naive implementation of the Voss con-
straint, and then a more efficient one.

4.1 A naive CSP
The Voss constraint can be implemented naively by introduc-
ing a die variable representing each die toss. Die variable
Di,j represents the j

th
toss of die i (first index is die number

and second one is toss index). We then relate the sequence
variables to sums of these die variables, according to Voss’
algorithm.

More precisely, we introduce the Voss tree that represents
the structure of the die variables as follows.

Definition 1 ((K,R)-Voss tree). For a given integer K and
R, the (K,R)-Voss tree is a binary tree of variables Di,j ,
with i = 1, . . . ,K and j = 1, . . . , 2i. Each Di,j has two
children Di+1,2j−1 and Di+1,2j . The domain of each Di,j is
{1, . . . , R}. K is called the order of the tree, R is its range.

The total number of variables in a (K,R)-Voss tree is

K∑
i=1

2i = 2K+1 − 2 (1)

which is less than 2× 2K .
For each sequence variable Xi we introduce a sum con-

straint equating Xi with the sum of the die variables obtained
by walking up the Voss tree from the leaf Dk,i:

Xi =
K−1∑
l=0

DK−l,di/2le (2)

Figure 3 shows the Voss tree for a sequence of length 8,
thus K = 3. In that case, the number of die variables is 14,
and we post the 8 constraints shown in Figure 4.

For a sequence of length N = 2K the Voss tree contains
2N − 2 extra die variables (Equation 1).

X1 = D1,1 +D2,1 +D3,1,

X2 = D1,1 +D2,1 +D3,2,

. . .

X8 = D1,2 +D2,4 +D3,8.

Figure 4: The n-ary sum equations defining the Voss con-
straint.

Definition 2 ((K,R)-Voss constraint). Let X1, . . . , X2K

be a sequence of variables, each with finite domain D =
[K,K.R]. The Voss constraint is the conjunction of all sum
constraints of the (K,R)-Voss tree defined by Equation 2.

Filtering the Voss constraint can be achieved by filter-
ing each sum constraint individually. However, domain-
consistency of sum constraints is pseudo-polynomial [Trick,
2003]. Additionally, domain-consistency for the whole Voss
constraint is not guaranteed by domain consistency of indi-
vidual sum constraints.

X1=S3,1

S1,1=D1,1 S1,2=D1,2

S2,1=S1,1+D2,1 S2,2=S1,1+D2,2 S2,3=S1,2+D2,3 S2,4=S1,2+D2,4

S3,1=S2,1+D3,1

S3,2=S2,1+D3,2

S3,3=S2,2+D3,3

S3,4=S2,2+D3,4

S3,5=S2,3+D3,5

S3,6=S2,3+D3,6

S3,7=S2,4+D3,7

S3,8=S2,4+D3,8

X2=S3,2 X3=S3,3 X4=S3,4 X5=S3,5 X6=S3,6 X7=S3,7 X8=S3,8

Figure 5: A tree of ternary sum constraints produces an
acyclic CSP equivalent to the one in Figure 3. Variable Si,j
represents a partial sum of the dice from the top die down to
Di,j .

4.2 An efficient filtering for the Voss constraint
A much more efficient filtering method for the Voss constraint
is obtained by replacing each n-ary sum constraint by a set of
ternary constraints representing partial sums. More precisely,
for each Di,j we introduce a variable Si,j representing the
partial sum from Di,j to the top of the Voss tree. In order
to avoid computing n-ary sums, Si,j are defined recursively
with ternary sum constraints as follows:

Si,j = Di,j + Si−1,dj/2e (3)

The sequence variables are given by Xi = SK,i.
The number of sum variables (Si,j) is equal to the num-

ber of die variables so the total number of extra variables
(Di,j and Si,j) is 2K+2 − 4, also linear in the size of the se-
quence. The number of ternary sum constraints is 2K+1 − 2.
The ternary constraints corresponding to our running exam-
ple (length 8, 3 dice) are illustrated in Figure 5 and Figure 6.

By construction, the resulting CSP is Berge-acyclic, i.e.,
the network is a tree and the constraints overlap on, at most,
one variable. Consequently, domain consistency for the
whole constraint is achieved by propagating each ternary sum

2484

S1,1 = D1,1, S1,2 = D1,2,

S2,1 = S1,1 +D2,1,

S2,2 = S1,1 +D2,2,

. . .

S3,1 = S2,1 +D3,1,

S3,2 = S2,1 +D3,2,

. . .

S3,8 = S2,4 +D3,8

Figure 6: The ternary sum equations defining the Voss con-
straint.

constraint individually [Beeri et al., 1983; Jégou, 1993]. If se-
quence variables have a domain size d, each additional vari-
able Si,j has a domain bounded by d. The complexity of fil-
tering one such ternary constraint is in O(d2). Therefore, for
a sequence of length N , the complexity of achieving domain-
consistency for the Voss constraint is in O(N.d2).

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-3 -2.5 -2 -1.5 -1 -0.5 0

S(
f)

f

α=1.03

Figure 7: The spectrum of a sequence generated from a CSP
with the Voss constraint only exhibits a very similar distribu-
tion as the one obtained with the original algorithm in Fig-
ure 2.

4.3 Generalization
The constraint can be easily generalized in two ways:
• Arbitrary sequence length. The running example fo-

cuses on the case where the length is a power of 2. The
tree structure proposed can easily accommodate arbi-
trary sequence length. The resulting tree is incomplete
but the incidence on the spectrum is negligible. For a
given sequence length l, the number of dice to consider
is nbDice = dlog 2(l)e.
• Arbitrary domains sizes. The range of dice maxDice

or R is obviously related to the domain size, since
values are by construction in [N,N ∗R]. For a con-
tiguous domain [min,max], R is to be chosen as
[bmin/nbDicec, dmax/nbDicee].

5 A Melody Generation Example
We revisit the classical melody generation example intro-
duced by Gardner by generating again melodies. Our goal is
not to show the effect of 1/f sequences on the perception of

 1

 1.5

 2

 2.5

 3

 3.5

-3 -2.5 -2 -1.5 -1 -0.5 0

S(
f)

f

α=0.04

Figure 8: The spectrum of a sequence generated from a CSP
with a GCC constraint only. Slope is about 0, far from 1.

melodies, which has already been done convincingly in [Voss
and Clarke, 1978]. Our goal is to show that 1) the Voss con-
straint does generate sequences with a 1/f spectral density,
like the original Voss algorithm, and 2) that this constraint,
when added to a CSP with another constraint, here a GCC,
still biases the spectrum of the resulting sequence to be in
1/f .

5.1 Implementation
We implemented the Voss constraint in BackJava, an in-
house Java finite-domain constraint solver similar in nature
to Choco [choco Team, 2010], as well as the MusES musi-
cal object library [Pachet, 1994]. All the experiments ran on
a machine with a Core i7, 2.3 GHz CPU, with 16GB RAM,
and running an Oracle Java 7 VM under Windows 8.

5.2 Generating Long Melodies
We consider a melody generation problem defined by three
sets of constraints. We generate sequences of integers (repre-
senting the pitch of musical notes) of length 512, so that the
spectrum can be computed without side effects. The range of
pitches (i.e., the domain D of sequence variables) is [0, 16],
i.e., covers roughly 2 octaves in a diatonic setting. The num-
ber of dice is 9 (= log2(512)), and their range is [0, 1, 2]. We
consider three cases:

1. A Voss constraint only holding on the whole sequence,

2. A global cardinality constraint (GCC) [Régin, 1996]
only. The GCC ensures that there is a balanced distri-
bution of values in the resulting sequence. We post the
GCC as follows: We consider Nopt the optimum distri-
bution, that would ensure that all values are equally rep-
resented: Nopt = N/ |D|. We enforce a GCC forcing
each value of D to occur exactly this optimum value,

3. A Voss constraint and the GCC constraint.

For each case we compute the log-log spectrum and esti-
mate the slope of curve as previously. The spectrum of case
#1 (Voss constraint only, see Figure 11) is shown in Figure 7.
It can be seen clearly that the spectrum is in 1/f . For case
#2 (GCC only, Figure 12) the spectrum (Figure 8) is clearly
not in 1/f . Case #3 (same GCC plus the Voss constraint, see
Figure 13) shows that the spectrum (Figure 9) is again in 1/f
thanks to the Voss constraint. The distribution of the slopes

2485

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

-3 -2.5 -2 -1.5 -1 -0.5 0

S(
f)

f

α=1.05

Figure 9: The spectrum of a sequence generated from a CSP
with a GCC constraint and a Voss constraint. The α coeffi-
cient is clearly much closer to 1 than with the GCC only.

of the various spectra for 100 solutions is shown in Figure 10
and confirms that the presence of the Voss constraint does
bias the spectrum toward an 1/f distribution. Running times
and number of backtracks, averaged for one solution, are re-
ported for each setup on Table 2. It can be seen that adding
a Voss constraint increases the cost of finding solutions in a
reasonable way.

setup running times (sec) backtrack count
Case #1 .07 0
Case #2 1.25 0
Case #3 2 12

Table 2: Average running times and number of backtracks,
for one solution, for the three experimental setups.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1
α

1/f
GCC

1/f + GCC

Figure 10: The histogram of slope values for the three cases
(Voss constraint only, GCC only and both). It can be seen that
the Voss constraint biases the spectrum as expected, even in
the presence of a GCC constraint.

5.3 Shorter Melodies
The impact of the Voss constraint on shorter melodies can
be assessed through examples rather than from the analy-
sis of the spectrum. Here, melodies are generated from
a Markov model estimated from two well-known songs of

Michel Legrand (“You must believe in Spring” and “How do
you keep the music playing?”).

Figure 11: A melody generated with the Voss constraint only.

In the first case (Figure 14) we use the meter constraint
[Roy and Pachet, 2013] to enforce metrical properties of the
generated sequence (notes do not cross bars), and a total du-
ration of 12 bars (in 4/4). Without the Voss constraint, meter
has a tendency to generate solutions which include long cy-
cles (see, e.g., the series of 5 consecutive C at the end of
the melody in Figure 14). Also, meter (which uses a Markov
model of order 1) may generate series of large intervals in
a row, which sounds awkward. These two cases seem to be
less frequent when using the Voss constraint, because of the
imposition of the specific correlation structure (Figure 15).

Figure 12: A melody generated with a GCC constraint only,
i.e., a balanced distribution of pitches.

2486

6 Discussion
We have introduced the Voss constraint, which ensures that
the elements of a sequence are generated from the dice toss-
ing scheme invented by Voss as described by Gardner. We
showed that the constraint can be implemented as a tree
of ternary sum constraints, yielding an efficient domain-
consistency procedure, so its overhead is arguably small. The
Voss constraint can be added to any sequence generation
problem to introduce a pressure for the sequence to exhibit a
1/f spectral density in average, and therefore look or sound
more natural.

Figure 13: A melody generated with a GCC and Voss con-
straint.

There are several limitations to our proposal. First, Voss’
algorithm imposes a specific structure of correlation, corre-
sponding to the ordering imposed by an increasing integer
sequence written in base 2. However, any other ordering
could be used as well. This can be addressed by a general-
ization of the algorithm in which the number of dice to toss
is chosen at random at each step, which would also result
in a 1/f distribution. The probability to toss d dice is pro-
portional to 1/2d to match on average the frequency of dice
re-tossing performed by Voss’s original algorithm. To do so,
however, requires the use of dynamic constraints (sums con-
straints would be posted depending on the value of this vari-
able) or reified constraints, which would increase the filtering
cost. Another approach is to draw a correlation structure at
random before the resolution, but this does not ensure that
the chosen structure is compatible with the other constraints.

Another extension of the algorithm concerns the value of
α. Voss’ algorithm produces exactly 1/f series (α = 1). It
could be interesting to control the value of α, typically within
[0,2]. This could be done, again, by introducing a variable
representing the number of dice to toss at each step, and bias-
ing its probability distribution through a specific value order-
ing heuristics. Another limitation concerns the coding. The

Figure 14: A shorter melody generated from a Markov model
of 2 songs of Michel Legrand, enforcing only metrical prop-
erties (here, a total duration of 12 bars) with the meter con-
straint.

Voss constraint requires a coding from the domain (e.g., mu-
sical notes) to integers (in our example the pitch of a note).
This coding is arbitrary and the user may want to experiment
with various codings (e.g., integers representing the degree
of the note in a scale) and there is no best coding a priori.
Finally, one could ensure that solutions look more random
by enforcing additional constraints on dice. For instance one
could enforce a uniformly distributed set of values, to simu-
late the effect of the law of big numbers. This could be done
by posting cardinality or nValue [Bessière et al., 2006] con-
straints on each die (i.e., for a die i, all the Di,j).

Figure 15: Same example as in Figure 14 but with a Voss
constraint added.

There are obviously limits to representing stochastic prop-
erties with hard constraints. Another approach, in progress,
is to model 1/f as a statistical constraint in the line of
Walsh [2002] or Rossi et al. [2014] using the same die struc-
ture. However, we think that the work presented here con-
tributes to constraint-based sequence generation by providing
insights on this elusive but ubiquitous 1/f phenomenon, seen
from a generative perspective.

Acknowledgements
This research is conducted within the Flow Machines project
which received funding from the European Research Council
under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 291156. We wish
to thank Mirko Degli Esposti for insightful discussions about
1/f distributions.

References
[Bartolini et al., 2011] Andrea Bartolini, Michele Lombardi,

Michela Milano, and Luca Benini. Neuron constraints to model

2487

complex real-world problems. In Jimmy Ho-Man Lee, editor,
Principles and Practice of Constraint Programming - CP 2011,
Perugia, Italy, volume 6876 of Lecture Notes in Computer
Science, pages 115–129. Springer, 2011.

[Beeri et al., 1983] Catriel Beeri, Ronald Fagin, David Maier, and
Mihalis Yannakakis. On the Desirability of Acyclic Database
Schemes. J. ACM, 30(3):479–513, 1983.

[Beldiceanu et al., 2007] Nicolas Beldiceanu, Mats Carlsson, So-
phie Demassey, and Thierry Petit. Global constraint catalogue:
Past, present and future. Constraints, 12(1):21–62, 2007.

[Bessière et al., 2006] Christian Bessière, Emmanuel Hébrard,
Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Filtering al-
gorithms for the nvalue constraint. Constraints, 11(4):271–293,
2006.

[choco Team, 2010] choco Team. choco: an Open Source Java
Constraint Programming Library. Research report 10-02-INFO,
École des Mines de Nantes, 2010.

[Farrell et al., 2006a] Simon Farrell, Eric-Jan Wagenmakers, and
Roger Ratcliff. 1/f noise in human cognition: Is it ubiqui-
tous, and what does it mean? Psychonomic Bulletin and Review,
13(4):737–741, 2006.

[Farrell et al., 2006b] Simon Farrell, Eric-Jan Wagenmakers, and
Roger Ratcliff. Estimation and interpretation of 1/f noise in hu-
man cognition. Psychonomic Bulletin and Review, 11:579–615,
2006.

[Gardner, 1978] Martin Gardner. Mathematical games-white and
brown music, fractal curves and one-over-f fluctuations. Scien-
tific American, 238(4):16–32, 1978.

[Hennig et al., 2011] Holger Hennig, Ragnar Fleischmann, Anneke
Fredebohm, York Hagmayer, Jan Nagler, Annette Witt, Fabian J.
Theis, and Theo Geisel. The nature and perception of fluctuations
in human musical rhythms. PLoS ONE, 6(10):e26457, 10 2011.

[Jégou, 1993] Philippe Jégou. On the consistency of general
constraint-satisfaction problems. In Richard Fikes and Wendy G.
Lehnert, editors, Proceedings of the 11th National Conference on
Artificial Intelligence. Washington, DC, USA, July 11-15, 1993.,
pages 114–119. AAAI Press / The MIT Press, 1993.

[Kasdin, 1995] N. Jeremy Kasdin. Discrete simulation of colored
noise and stochastic processes and 1/fα power law noise gener-
ation. Proceedings of the IEEE, 83(5):802–827, May 1995.

[Lombardi and Gualandi, 2013] Michele Lombardi and Stefano
Gualandi. A new propagator for two-layer neural networks in
empirical model learning. In Christian Schulte, editor, Princi-
ples and Practice of Constraint Programming - 19th Interna-
tional Conference, CP 2013, Uppsala, Sweden, September 16-20,
2013. Proceedings, volume 8124 of Lecture Notes in Computer
Science, pages 448–463. Springer, 2013.

[Mandelbrot, 1982] Benoit B. Mandelbrot. The fractal geometry of
nature. W.H. Freeman, 1st edition, August 1982.

[Morin and Quimper, 2014] Michael Morin and Claude-Guy
Quimper. The markov transition constraint. In Helmut Simonis,
editor, Integration of AI and OR Techniques in Constraint
Programming - 11th International Conference, CPAIOR 2014,
Cork, Ireland, May 19-23, 2014. Proceedings, volume 8451 of
Lecture Notes in Computer Science, pages 405–421. Springer,
2014.

[Pachet and Roy, 2011] François Pachet and Pierre Roy. Markov
constraints: steerable generation of Markov sequences. Con-
straints, 16(2), 2011.

[Pachet, 1994] François Pachet. An Object-Oriented Representa-
tion of Pitch-Classes, Intervals, Scales and Chords. In Proceed-
ings of Journées d’Informatique Musicale (JIM), 1994.

[Perlin, 1985] Ken Perlin. An Image Synthesizer. Proceedings of
ACM SIGGRAPH, 24(3), 1985.

[Pesant and Régin, 2005] Gilles Pesant and Jean-Charles Régin.
SPREAD: A balancing constraint based on statistics. In Peter
van Beek, editor, Principles and Practice of Constraint Program-
ming - CP 2005, Sitges, Spain, volume 3709 of Lecture Notes in
Computer Science, pages 460–474. Springer, 2005.

[Régin, 1996] Jean-Charles Régin. Generalized arc consistency for
global cardinality constraint. In William J. Clancey and Daniel S.
Weld, editors, Proceedings of the Thirteenth National Conference
on Artificial Intelligence and Eighth Innovative Applications of
Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland,
Oregon, August 4-8, 1996, Volume 1., pages 209–215. AAAI
Press / The MIT Press, 1996.

[Rossi et al., 2014] Roberto Rossi, Steven David Prestwich, and
S. Armagan Tarim. Statistical constraints. In Torsten Schaub,
Gerhard Friedrich, and Barry O’Sullivan, editors, ECAI 2014 -
21st European Conference on Artificial Intelligence, 18-22 Au-
gust 2014, Prague, Czech Republic - Including Prestigious Appli-
cations of Intelligent Systems (PAIS 2014), volume 263 of Fron-
tiers in Artificial Intelligence and Applications, pages 777–782.
IOS Press, 2014.

[Roy and Pachet, 2013] Pierre Roy and François Pachet. Enforcing
Meter in Finite-Length Markov Sequences. In Marie desJardins
and Michael L. Littman, editors, AAAI. AAAI Press, 2013.

[Schaus et al., 2007] Pierre Schaus, Yves Deville, Pierre Dupont,
and Jean-Charles Régin. The deviation constraint. In Pascal Van
Hentenryck and Laurence A. Wolsey, editors, Integration of AI
and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems, CPAIOR, Brussels, Belgium, vol-
ume 4510 of Lecture Notes in Computer Science, pages 260–274.
Springer, 2007.

[Trick, 2003] Michael A. Trick. A dynamic programming approach
for consistency and propagation for knapsack constraints. Annals
OR, 118(1-4):73–84, 2003.

[Voss and Clarke, 1975] Richard Voss and John Clarke. 1/f noise
in music and speech. Nature, 258:317–318, 1975.

[Voss and Clarke, 1978] Richard Voss and John Clarke. 1/f noise
in music: Music from 1/f noise. Journal of the Acoustical Soci-
ety of America, 63:258–263, 1978.

[Walsh, 2002] Toby Walsh. Stochastic constraint programming. In
Frank van Harmelen, editor, Proceedings of the 15th Eureopean
Conference on Artificial Intelligence, ECAI’2002, Lyon, France,
July 2002, pages 111–115. IOS Press, 2002.

2488

