References

Mike Precup (mprecup@stanford.edu)
ENJMIN 2016

Reference Style

[typically write X instead of X or X
All are perfectly acceptable, but now seems like a good time to point out a C++ quirk:
// X, y, and z are type int
X, Y, zZ
// What are they now?

X, Yy, Z

Reference Style

I typically write int *x instead of int* xor int * x

All are perfectly acceptable, but now seems like a good time to point out a C++ quirk:
// X, y, and z are type int

int x, y, z

// x is int*. y and z are int.

int* x, vy, z

// You probably meant this:

int *x, *y, *z

Reference Style

I typically write int *x instead of int* xor int * x

All are perfectly acceptable, but now seems like a good time to point out a C++ quirk:
// X, y, and z are type int

int x, y, z

// x is int*. y and z are int.

int* x, vy, z

// You probably meant this:

int *x, *y, *z

& and * bind to the name, not the type, so I put them next to the name

Reference Interlude

You've already seen functions with reference parameters:

cout X endl; // Prints 2

Reference Interlude

You can also create references like any other variable in a function:

main
X
y = X
y
cout X endl; // prints 2

Reference Interlude

Reference variables inside a function can be useful for saving a result:

// This function takes a long time to run
int findImportantIndex

cout elems|findImportantIndex endl
elems|findImportantIndex doThings
elems| findImportantIndex add

// Why is this bad?

Reference Interlude

We could avoid the function call by saving the computed index

// This function takes a long time to run
importantIndex = findImportantIndex

cout elems|importantIndex endl
elems|importantIndex|.doThings
elems| importantIndex|.add

Reference Interlude

e Even better, we could save the element itself
e This is faster and more concise

// This function takes a long time to run
Foo& important elems|findImportantIndex

cout important endl
important.doThings
important.add

Reference Interlude

Functions can also return references:

global
getGlobal
global

main
getGlobal
cout global endl; // prints 2

Reference Interlude

Functions can also return references:

// REALLY BAD
getGlobal
global

global

Reference Interlude

Here’s a case where this is more useful:

Person
nameVar
name

main

Person p
p.name

cout p.name

nameVar

// what does this line do?
endl

Reference Interlude

Let’s say we add the reference:

Person
nameVar
name

main

Person p
p.name

cout p.name

nameVar

// what does this line do?
endl

How Do References Work?

In most cases, references are based on pointers
You can think of them as pointers that are automatically deferenced

X
y = X
y

// Equivalent to
X

Yy X

