Memory

Axel Buendia
(axel.buendia@cnam.fr)

Different memories?

e RAM

o the stack: used for local variables with limited scope, very fast
o the heap: used for persistent variables (created with new), much slower

o the registers: used for very local and basic typed variables, fastest

The STACK

void Function
Vector Xx

x is allocated on the stack
memory allocation is very fast (because of the allocator)
the size of the stack is limited (stack overflow error)

at the end of the variable scope, the memory is freed
automatically

e stack is unique to each thread (not shared)

STACK allocator

® Process as a stack
e Next free space?

o address of the top of the stack

o shift the top of the stack according to the needed size
® Delete

o just free the memory attached to the pointer address
o do not shift the top of the stack

® Pros
o very fast
® (Cons

o limited size

o does not manage defragmention of the memory

The HEAP

void Function
Vector* x Vector();

x is allocated on the heap

memory allocation is much slower (because of the
allocator)

the size of the heap is almost unlimited

at the end of the variable scope, the memory is kept, the
desallocation must be made manually

e heap is shared among the threads

HEAP allocator

e Complex allocator
e Next free space?
o complex management of holes in memory

o bookkeeping of free spaces

e Delete
o just free the memory attached to the pointer address
o register the new hole in the book keeping
e Pros
o unlimited size
o manage defragmention of the memory
e Cons

o much slower

The REGISTERS

Function

'i' may be stored in a register (compiler choice)

read and write are the fastest (faster than in RAM)

very limited (depend on the processor), only basic types
Registers have no memory address

NB: 'register' keyword is deprecated

REGISTERS

e How to use them?
o only basic types (int then float)
o variable usage in the scope
o no access to variable address

e To check look at the assembly
e Use inline assembly asm{}

Memory Alignment

e To enhance performance
e RAM <-> BUS <> CPU

e Example
o Bus 4 octets (32 bits)
o Data 4 octets on address % 4 =0

e alignment violation

® read 2 times 4 octets and rebuild the value

e Alignment: address % size =0
e Be careful with bit fields

e Subtleties:

o CPU cache size
© virtual memory pagination
e Solutions

o look at compiler options
o add manual padding

Bit Field

Date
unsigned int weekDay //0..7 (3 bits)
unsigned int monthDay //0..31 (6 bits)
unsigned int month //0..12 (5 bits)
unsigned int year //0..100 (8 bits)

Bit field regroup several members which sizes are less than an int
each bit field member is declared with its size in bits
type of a bit field can only be char, short, int, long, long long or enum

the size of the bit field member cannot exceed the underlying type
(other bits are used as padding)

bit field members have no address
bit field are signed or unsigned by default depending on the compiler

e passing the range of a bit field generates strange behaviors depending
on the compiler

Alignment & Bit Fields

Date
unsigned int weekDay //0..7 (3 bits)
unsigned int monthDay //0..31 (6 bits)
unsigned int month //0..12 (5 bits)
unsigned int year //0..100 (8 bits)
// total : 22 bits
unsigned int padding //(10 bits to match 32 bits)

e to force memory alignment, padding is added to match the next CPU
meaningful size (here 32 bits)

e an unnamed O sized bit field member can be used to force padding

	Blank Page
	Blank Page
	Blank Page

