
Memory

Axel Buendia

(axel.buendia@cnam.fr)

Different memories?

● RAM

○ the stack: used for local variables with limited scope, very fast

○ the heap: used for persistent variables (created with new), much slower

○ the registers: used for very local and basic typed variables, fastest

The STACK

void Function () {
Vector x;

}

● x is allocated on the stack

● memory allocation is very fast (because of the allocator)

● the size of the stack is limited (stack overflow error)

● at the end of the variable scope, the memory is freed

automatically

● stack is unique to each thread (not shared)

STACK allocator

● Process as a stack

● Next free space?

○ address of the top of the stack

○ shift the top of the stack according to the needed size

● Delete

○ just free the memory attached to the pointer address

○ do not shift the top of the stack

● Pros

○ very fast

● Cons

○ limited size

○ does not manage defragmention of the memory

The HEAP

void Function () {
Vector* x = new Vector();

}

● x is allocated on the heap

● memory allocation is much slower (because of the

allocator)

● the size of the heap is almost unlimited

● at the end of the variable scope, the memory is kept, the

desallocation must be made manually

● heap is shared among the threads

HEAP allocator

● Complex allocator

● Next free space?

○ complex management of holes in memory

○ bookkeeping of free spaces

● Delete

○ just free the memory attached to the pointer address

○ register the new hole in the book keeping

● Pros

○ unlimited size

○ manage defragmention of the memory

● Cons

○ much slower

The REGISTERS

void Function () {
register int i = 0;

}

● 'i' may be stored in a register (compiler choice)

● read and write are the fastest (faster than in RAM)

● very limited (depend on the processor), only basic types

● Registers have no memory address

● NB: 'register' keyword is deprecated

REGISTERS

● How to use them?

○ only basic types (int then float)

○ variable usage in the scope

○ no access to variable address

● To check look at the assembly

● Use inline assembly asm{}

Memory Alignment

● To enhance performance

● RAM <-> BUS <-> CPU

● Example

○ Bus 4 octets (32 bits)

○ Data 4 octets on address % 4 !=0

• alignment violation

• read 2 times 4 octets and rebuild the value

● Alignment: address % size = 0

● Be careful with bit fields

● Subtleties:

○ CPU cache size

○ virtual memory pagination

● Solutions

○ look at compiler options

○ add manual padding

Bit Field

struct Date {
unsigned int weekDay : 3; //0..7 (3 bits)
unsigned int monthDay : 6; //0..31 (6 bits)
unsigned int month : 5; //0..12 (5 bits)
unsigned int year : 8; //0..100 (8 bits)

}

● Bit field regroup several members which sizes are less than an int

● each bit field member is declared with its size in bits

● type of a bit field can only be char, short, int, long, long long or enum

● the size of the bit field member cannot exceed the underlying type

(other bits are used as padding)

● bit field members have no address

● bit field are signed or unsigned by default depending on the compiler

● passing the range of a bit field generates strange behaviors depending

on the compiler

Alignment & Bit Fields

struct Date {
unsigned int weekDay : 3; //0..7 (3 bits)
unsigned int monthDay : 6; //0..31 (6 bits)
unsigned int month : 5; //0..12 (5 bits)
unsigned int year : 8; //0..100 (8 bits)
// total : 22 bits
unsigned int padding : 10; //(10 bits to match 32 bits)

}

● to force memory alignment, padding is added to match the next CPU

meaningful size (here 32 bits)

● an unnamed 0 sized bit field member can be used to force padding

	Blank Page
	Blank Page
	Blank Page

