
Objects and Namespaces
Original from : Mike Precup (mprecup@cs.stanford.edu)

ENJMIN Edition 2016

Namespaces

string

fstream

vector

iostream

stack

ios

pair

hours

duration

system_clock

seconds

tuple

ignore

stringstream

string

Namespaces

string

fstream

vector

iostream

stack

ios

pair

hours

duration

system_clock

seconds

tuple

ignore

stringstream

string

Namespaces
Is there a problem with having the standard library take common names?

Depends on who you ask. It is more convenient sometimes, but if you want your own

implementation, it’s unfortunate.

Namespaces
Is there a problem with having my library take common names?

Yes. No qualifications on this one. It’s way too easy for two people’s libraries to conflict

on naming! This was a common issue in C, and the fixes for it generally involve

abusing the compiler, if a fix was even possible.

Namespaces
Most modern languages fix this problem in similar ways. You may already be familiar

with namespaces!

Generate a random number in Python

import random

print random.random()

Accessing Namespace Members
Nothing fancy here, just use namespace::member (i.e. std::string)

Many languages use ., but that’s the same as for accessing members in an object

In C++, the scope resolution operator is ::

A Basic Namespace
namespace stanford {

 void foo();

}

int main() {

 stanford::foo();

}

Splitting Namespaces
namespace stanford {

 void foo();

}

namespace stanford {

 void bar();

}

Many files can contribute to a namespace!

The std Namespace
● std is a special namespace used by the standard library

● Technically, it’s special in that you’re not allowed to add to it

○ Most compilers let you anyways

Being Lazy
You obviously don’t need to write std:: every single time you use string, we hadn’t

been until today. How can we get around the extra typing?

Being Lazy
You obviously don’t need to write std:: every single time you use string, we hadn’t

been until today. How can we get around the extra typing?

● using namespace std;

○ Makes entire namespace visible

Being Lazy
You obviously don’t need to write std:: every single time you use string, we hadn’t

been until today. How can we get around the extra typing?

● using namespace std;

○ Makes entire namespace visible

● using std::string;

○ Makes one member visible

Nested Namespaces
You can nest namespaces like so:

namespace A {

namespace B {

void foo();

}

}

You can then access foo with A::B::foo

Nested Namespaces
C++11 adds another syntax for it:

namespace A::B {

void foo();

}

You can then access foo with A::B::foo

Student::

:: doesn’t just apply to namespaces, it’s the scope resolution operator

If you want to access something scoped to a class, you need to use ::

:: vs .
● ::

○ Use the scope resolution operator when accessing something that belongs to all

instances of a class

● .
○ Use the member operator when accessing something that belongs to an object

“All Instances of a Class”
So what belongs to every instance of a class?

● Implementations for functions

● static members

● Nested classes

static

● static is, as far as I know, the most overloaded keyword in C++

● Today we’ll be talking about what it means in a class definition

● There are many other uses of static, so if you see it outside of a class, it

probably means something different

static Members
static members are shared by all instances of a class

class GlobalCounter {
public:

int increment() {
return ++count;

}
private:

static int count = 0;
};

int main() {
GlobalCounter gc1;
GlobalCounter gc2;
// Prints 1
cout << gc1.increment() << endl;
// Prints 2
cout << gc2.increment() << endl;

}

Fun Fact
This code doesn’t actually compile!

class GlobalCounter {
public:

int increment() {
return ++count;

}
private:

static int count = 0;
};

int main() {
GlobalCounter gc1;
GlobalCounter gc2;
// Prints 1
cout << gc1.increment() << endl;
// Prints 2
cout << gc2.increment() << endl;

}

Fun Fact
This code does actually compile!

class GlobalCounter {
public:

int increment() {
return ++count;

}
private:

static int count;
};

int GlobalCounter::count = 0;

int main() {
GlobalCounter gc1;
GlobalCounter gc2;
// Prints 1
cout << gc1.increment() << endl;
// Prints 2
cout << gc2.increment() << endl;

}

u wot m8
This class also compiles:

class Angle {
public:

// TODO: Implement actual functions
private:

const static double PI = 3.14159;
double angle;

};

Implementing static Members
Most of the time, you need what is essentially a prototype and an implementation for

static members, like counter.

There’s an exception made for const numeric types.

When you provide an implementation, you do it like so:

int GlobalCounter::count = 0;

Note the scope resolution operator!

Accessing static Members
class Day {
public:

const static int NUM_HOURS = 24;
// other stuff

private:
// other stuff

};

int main() {
cout << Day::NUM_HOURS << endl; // Prints 24

}

static Functions
class Day {
public:

static int numHours() {
return 24;

}
};

int main() {
cout << Day::numHours() << endl; // Prints 24

}

Nested Classes
You can nest classes, and it works pretty much as expected

class A {
public:

class B {
// Implementation

};
};

int main() {
A::B b;

}

Nested Classes
● Access specifiers (e.g. public, private) work as expected

● Gets a bit weird when you’re using templates

○ We’ll talk about that in a later lecture

