
STL Algorithms
Original from : Mike Precup (mprecup@cs.stanford.edu)

ENJMIN Edition 2016

Abstraction in the STL

abstraction allows us to express the general structure of a problem instead of the

particulars of implementation

Abstraction in the STL

● We began by talking about basic types.

● char, int, double, string, others.

● Each of these types held what was conceptually a "single value"

Abstraction in the STL

Basic Types

Abstraction in the STL

● Many programs require a number of variables of the same basic type

○ A vector of integers representing student's ages

○ A mapping translating between names and addresses

● Containers allow a programmer to use the same collection regardless of the

underlying basic type

● The same <vector> implementation can be used for ints as well as strings

Abstraction in the STL

Basic Types

Containers

Abstraction in the STL

● The same <vector> implementation can be used for ints as well as strings

● This means we can use containers to perform various operations on basic types,

regardless of what the basic type is

● Is it possible to perform various operations on containers regardless of what the

container is?

Abstraction in the STL

● Iterators allow us to abstract away which container was used

○ Similar to how containers allow us to abstract away which basic type was used

Abstraction in the STL

Basic Types

Containers

Iterators

Abstraction in the STL

● Operations like sorting, partitioning, filtering, searching, etc., can be written to

work with a vector, deque, set, or any other data type.

● We call these operations the STL algorithms

● Rely heavily on templates

Abstraction in the STL

Basic Types

Containers

Iterators

Algorithms

Examples of Algorithms

Let's take a look at why this is cool.

See AlgorithmFun.pro

Why Algorithm

Why do we need this complex model of abstraction?

● Don't duplicate code

Why Algorithm

Why do we need this complex model of abstraction?

● Don't duplicate code

● Write correct code

● Write efficient code

● Write clear code

Why Algorithm

To take a look at what's possible with <algorithm>, let's write a quick magic square

solver.

Why Algorithm

A "magic square" is a 3x3 grid in which all rows, columns, and 3-element diagonals sum

to the same number.

2 7 6

9 5 1

4 3 8

Why Algorithm

A "magic square" is a 3x3 grid in which all rows, columns, and 3-element diagonals sum

to the same number.

2 7 6

9 5 1

4 3 8

Why Algorithm

A "magic square" is a 3x3 grid in which all rows, columns, and 3-element diagonals sum

to the same number.

2 7 6

9 5 1

4 3 8

Why Algorithm

A "magic square" is a 3x3 grid in which all rows, columns, and 3-element diagonals sum

to the same number.

2 7 6

9 5 1

4 3 8

Why Algorithm

We'll represent a magic square as a linear vector of elements

2 7 6

9 5 1

4 3 8

2 7 6 9 5 1 4 3 8

Why Algorithm

If we could enumerate through every permutation of the numbers 1-9 in a vector, we

could find every magic square which uses only the numbers 1-9...

If only we had an <algorithm> to do that...

Why Algorithm

Let's take a look at some code to solve this in MagicSquares.pro

In-depth: std::copy

To understand iterators and algorithms a bit better, let's take a look at the copy

algorithm we wrote last time

vector<int> v;
v.push_back(1);
v.push_back(650);
v.push_back(867);
v.push_back(5309);

vector<int> vcopy(4);

copy(v.begin(), v.end(), vcopy.begin());

In-depth: std::copy

1 650 867 5309

0 0 0 0

v:

vcopy:

In-depth: std::copy

1 650 867 5309

1 0 0 0

v:

vcopy:

In-depth: std::copy

1 650 867 5309

1 650 0 0

v:

vcopy:

In-depth: std::copy

1 650 867 5309

1 650 867 0

v:

vcopy:

In-depth: std::copy

1 650 867 5309

1 650 867 5309

v:

vcopy:

In-depth std::copy

What happens if we didn't allocate enough space?

In-depth: std::copy

1 650 867 5309

0 0

v:

vcopy:

In-depth: std::copy

1 650 867 5309

1 0

v:

vcopy:

In-depth: std::copy

1 650 867 5309

1 650

v:

vcopy:

In-depth: std::copy

1 650 867 5309

1 650

v:

vcopy:

In-depth: std::copy

How can we avoid running into this problem?

Iterator Adapters

Sometimes we need to form "weird" iterators.

● We don't just want to iterate over elements, we want to retrieve them from an

istream

● We don't just want to iterate over elements we want to add them to a vector

Iterator Adapters

Stream iterators are a fun way to simplify code.

When you want to repeatedly read values from an input streams, you can form

iterators which write values to a stream for you.

It's easiest to explain these with a quick bit of code demonstrating how they work.

Iterator Adapters

See code in Sum.pro

Iterator Adapters

Inserters create an iterator which inserts values into a container for you.

These are useful when using something like std::copy.

Iterator Adapters

Using a back_inserter will push the elements to the end of vcopy, so you don't have

to worry about vcopy not having enough space.

vector<int> v;
v.push_back(1);
v.push_back(650);
v.push_back(867);
v.push_back(5309);

vector<int> vcopy;

copy(v.begin(), v.end(), back_inserter(vcopy));

Iterator Adapters

1 650 867 5309

v:

vcopy:

Iterator Adapters

1

1 650 867 5309

v:

vcopy:

Iterator Adapters

1 650

1 650 867 5309

v:

vcopy:

Iterator Adapters

1 650 867

1 650 867 5309

v:

vcopy:

Iterator Adapters

1 650 867 5309

1 650 867 5309

v:

vcopy:

Iterator Adapters

● Similar to back_inserter, there is also a front_inserter for structures like a

deque, and just plain inserter for structures like sets and maps

● dereferencing a back_inserter calls push_back

● dereferencing a front_inserter calls push_front

● dereferencing an inserter calls insert

Closing Notes

● There are many more algorithms than what we have covered today

● To see the full list of all 85 algorithms, see http://www.cplusplus.

com/reference/algorithm

http://www.cplusplus.com/reference/algorithm
http://www.cplusplus.com/reference/algorithm
http://www.cplusplus.com/reference/algorithm

