
Sequence Containers

Original from : Mike Precup (mprecup@cs.stanford.edu)

ENJMIN Edition 2016

Structs

● A struct is an easy way to bundle multiple variables together

Structs

struct point {

int x;

int y;

};

point p;

p.x = 4;

p.y = 3;

Review: Sequence Containers

● A container class allows you to store any number of things

● A sequence container is a container whose elements can be accessed

sequentially.

● Sequence containers include vectors, lists, and more!

● Container adaptors include stacks, queues, and priority queues

● http://www.cplusplus.com/reference/stl/

http://www.cplusplus.com/reference/stl/
http://www.cplusplus.com/reference/stl/

Container #1: Stack

First, let's talk about how

to use the STL stack.

STL <stack>:

What you want to do STL stack<int>

Create a stack stack<int> x;

Get the size of a stack int size = x.size();

Check if a stack is empty if (x.empty()) ...

Push a value on the stack x.push(42);

Peek at the top element without
popping it

int top = x.top();

Pop off the top element
and ignore its value

x.pop();

STL <stack>:

What you want to do STL stack<int>

Clear the stack while(!x.empty())
x.pop();

Convert the stack to a string string s;
while(!x.empty() {
 s += x.top();
 s += " ";

x.pop();
}
// doesn’t work for int

Pop and save the value int top = x.top();
x.pop();

STL <stack>: Usage

Let's look at a quick demo in STLStack

“Thus, the standard library will serve as

both a tool and as a teacher”

- Bjarne Stroustrup

STL <stack>: Why ?

Why is there no .clear() function for stacks?

STL <stack>: Why ?

Why is there no .clear() function for stacks?

● Conceptually, clearing isn't part of the interface to a stack

● It's very easy to write your own clear function:

// stack<int> s = ...;

while (!s.empty()) {

 s.pop();

}

STL <stack>: Why ?

Why doesn't pop return the value it removed?

STL <stack>: Why ?

Why doesn't pop return the value it removed?

● The caller might not need the value, in which case returning the value would be

wasteful.

● It's easy to write code which pops and saves the value.

// stack<int> s = ...;

int value = s.top();

s.pop();

STL <stack>: Why ?

Why isn't there a toString function?

STL <stack>: Why ?

Why isn't there a toString function?

● Implementing toString would require that the type stored in the stack could be

converted to a string

○ For example, you can convert a stack<int> to a string because you can convert an int to a

string.

● It's tough to say what the "proper" way to convert a stack to a string is

Container #2: Vector

First, let's talk about how vectors are represented in the STL.

STL <vector>:

What you want to do STL vector<int>

Create an empty vector vector<int> v;

Create a vector with n
copies of zero

vector<int> v(n);

Create a vector with n
copies of a value k

vector<int> v(n, k);

Add a value k to the end of
the vector

v.push_back(k);

Clear a vector v.clear();

Get the element at index i
(verify that i is in bounds)

int k = v.at(i);

Check if the vector is empty if (v.empty()) ...

Replace the element at
index i (verify that i is in
bounds)

v.at(i) = k;

STL <vector>:

Get the element at index i
without bounds checking

int a = x[i];

Change the element at
index i without bounds
checking

x[i] = v;

Apply a function to each
element in x

// We'll talk about
this in another
lecture...

Concatenate vectors v1 and
v2

// We'll talk about
this in another
lecture...

Add an element to the
beginning of a vector

// Impossible! (or at
least slow)

STL <vector>: Usage

Let's look at a quick demo in STLVector

STL <vector>: Why ?

Why doesn't vector have bounds checking?

STL <vector>: Why ?

Why doesn't vector have bounds checking?

● If you write your program correctly, bounds checking will do nothing but make

your code run slower

STL <vector>: Why ?

Why is there no push_front method?

STL <vector>: Why ?

Why is there no push_front method?

● This is a bit more complicated

The Mystery of push_front

Pushing an element to the front of the vector requires shifting all other elements in the

vector down by one, which can be very slow

To demonstrate this, let's say we had this nice little vector:

6 7 5 3 0 9

The Mystery of push_front

Now, let's say that push_front existed, and that you wanted to insert an 8 at the

beginning of this vector.

8

6 7 5 3 0 9

v.push_front(8)

The Mystery of push_front

First, we may have to expand the capacity of the vector

8

6 7 5 3 0 9

v.push_front(8)

The Mystery of push_front

Then, we'll need to shift every single element down one position

8

6 7 5 3 0 9

v.push_front(8)

The Mystery of push_front

Finally, we can actually insert the element we wanted to insert.

8 6 7 5 3 0 9

v.push_front(8)

Just how bad is push_front?

// Adding to the back

for (int i = 0; i < N; i++)

v.push_back(i);

// Or: Adding to the front

for (int i = 0; i < N; i++)

v.insert(v.begin(), i);

// How big can the difference be?

Just how bad is push_front?

push_front push_back

N = 1000 0.01 0

N = 10000 0.89 0.01

N = 100000 117.98 0.04

N = 1000000 Hours 0.31

N = 10000000 Months 3.16

You can see the difference between an O(n2) algorithm and an O(n) algorithm!

STL <deque>: What's a deque?

● A deque (pronounced "deck") is a double ended queue

● Unlike a vector, it's possible (and fast) to push_front

● The implementation of a deque isn't as straightforward as a vector though

STL <deque>: Usage

Let's look at a quick demo in STLDeque

STL <deque>: Implementation

There's no single specification for representing a deque, but it might be laid out

something like this

NULL

STL <deque>: Implementation

You could support efficient insertion by keeping some reserved space in front of the

vector representing the first elements of the deque

6 7

5 3 0

9

NULL

STL <deque>: Implementation

You could support efficient insertion by keeping some reserved space in front of the

vector representing the first elements of the deque

6 7

5 3 0

98

NULL

STL <deque>: Performance

● We can now use the push_front function, and it will run much faster than if

we had used a vector.

● Let's see how this looks in real world performance numbers

push_front: vector and deque

// Vector test code

vector<int> v;

// Insert at the start of the vector

for (int i = 0; i < N; i++)

v.insert(v.begin(), i);

// Clear by using pop_front (erase)

for (int i = 0; i < N; i++)

v.erase(v.begin());

push_front: vector and deque

// Deque test code

deque<int> d;

// Insert elements using push_front

for (int i = 0; i < N; i++)

d.push_front(i);

// Clear by using pop_front

for (int i = 0; i < N; i++)

d.pop_front();

push_front: vector and deque

<vector> <deque>

N = 1000 0.02 0

N = 10000 2.12 0.01

N = 100000 264.9 0.04

N = 1000000 Hours 0.44

N = 10000000 Months 5.54

Why use a vector?

If a deque can do everything a vector can plus add to the beginning, why not always

user deques?

Why use a vector?

If a deque can do everything a vector can plus add to the beginning, why not always

user deques?

● For other common operations like access and adding to the end, a vector

outperforms a deque

Element Access: vector and deque

vector<int> v(N);

deque<int> d(N);

for (int i = 0; i < N; i++)

v[i] = i;

for (int i = 0; i < N; i++)

d[i] = i;

Access: vector and deque

<vector> <deque>

N = 1000 0.02 0.14

N = 10000 0.28 1.32

N = 100000 3.02 13.22

N = 1000000 30.84 133.30

push_back: vector and deque

// Vector test code

vector<int> v;

// Insert elements using push_back

for (int i = 0; i < N; i++)

v.push_back(i);

// Clear by using pop_back

for (int i = 0; i < N; i++)

v.pop_back();

push_back: vector and deque

// Deque test code

deque<int> d;

// Insert elements using push_back

for (int i = 0; i < N; i++)

d.push_back(i);

// Clear by using pop_back

for (int i = 0; i < N; i++)

d.pop_back();

push_back: vector and deque

<vector> <deque>

N = 1000 0.02 0.02

N = 10000 0.20 0.20

N = 100000 1.98 1.92

N = 1000000 19.9 20.78

Showing Intent

● Why use a vector when you could use a deque (aside from performance)?

● Why use a stack when you could use a vector?

