
Game Levels
Procedural Generation

Syllabus

• Tools : random numbers, noise

• Modular approach

• Grammars

• Markov Chains

• Evolutionary Algorithm

• Cellular Automata

• Wave Function Collapse

Introduction

Mission / Game Space

Focus

• Main goal : focus generate game space

– No planning algorithm

Positive aspects
of generated game space

• Large possibility space

– Curiosity, Exploration, Replayability

• Coherence

• Appropriation

• Cost ?

Drawbacks

• Q.A.

– Probabilist : can fail

• Hard to control / authorship

• Player get lost in uniformity

– Just another sine wave mountain

• Lack of meaning

– Why is there a cave here ?

Mixed Initiative Approach

Design Process

• To design a generator, you first need to talk
with those who are doing it by hand:

– Domain ontology (concepts and their
relationships)

– Evaluation function (differentiate between good
and bad design)

– Game space creatio process (what choices, which
steps)

MDA

Mechanics : base components of
the game - its rules, every basic
action the player can take in the
game, the algorithms and data
structures in the game engine etc.

Dynamics : are the run-time
behavior of the mechanics acting on
player input and "cooperating" with
other mechanics.

Aesthetics are the emotional
responses evoked in the player -
joy, frustration, fantasy, fellowship.

“For example, the mechanics of
card games include shuffling,
trick-taking and betting from
which dynamics like bluffing can
emerge” [Hunicke2004]

LD

Basic tools

Randomness

Random numbers

• rand() : pseudo random
number generator,
uniform distribution

– Every number has the
same probability to be
observed

– What if I need something
else ?

Galton Board

Normal Distribution

• Two parameters : mean
and standard deviation

• Natural: sum of
independant random
variables tends toward a
normal distribution
(central limit theorem)

– Btw : be careful, summing
rand() does not give
another rand()

Rand() with normal distribution

• U(0,1) = loi uniforme dans]0,1]

• Puis on multiplie par écart type et on ajoute
notre moyenne pour avoir un rand() normal
avec nos paramètres.

• Il existe d’autres lois (poisson etc… à voir)

Tab Rand

• Give a specific probability to each choice.

– Give each choice its probability (ex 0.2,0.3,0.5)

– Normalize to have a sum of 1 (divide by sum of all
numbers)

– Draw a random number in [0,1]

– If lower than first number : first event,

• Elseif lower than second number : second event

• Elseif… etc…

Tab Rand

Basic tools

Noise Functions

Value Noise

• Random numbers arranged on a grid

• Interpolation between cell corners (x then y)

9 8 95 4

3 1 78 2

8 3 54 1

9 2 74 3

9 8 95 4

3 1 78 2

8 3 54 1

9 2 74 3

9 8 95 4

3 1 78 2

8 3 54 1

9 2 74 3

6,25

3,75

1/4

9 8 95 4

3 1 78 2

8 3 54 1

9 2 74 3

3,75

1/4

5

6,25

Value noise (cell top left corner)

Interpolation

• Linear :

– (1-t)*v1 + t*v2, t dans [0,1]

• Hermite smooth step (black)

– Continuous first order
derivative

• X5 smooth step (red) :

– dérivée seconde
également continue

Linear interpolation

Hermite

x5

Gradient Noise (Perlin)

• Each point of the grid is a normalized 2D vector
(can be extended to 3D.. etc)

• Compute dot products betwen random direction
at each grid point and direction to lookup
position
– Changes with distance

(0 at grid point)
– Changes with angle

(0 when perpendicular)

• Then interpolate values like
we did with value noise.

Linear Interpolation

Hermite

x5

Normalized direction

Gradient Noise (Perlin)

• Toujours 0 aux points de la grille

• Quand on part d’un point de la grille, il y a
forcément des directions où la valeur varie et
une autre ou la valeur est constante.

– La taille de la grille définit la fréquence du bruit,
les gradients l’orientation des variations.

Simplex Noise

• Much harder to explain
• Simplex : simplest nD geometrical object (triangle

in 3D)
• Better version of perlin nois. Faster to compute,

grandient can be easily obtained (useful for
shading for example)

+ +

+ + =

Adding multiple frequencies

Compute other frequencies

• Multiply input coordinates to change
frequency

Raymarched Perlin Noise

Ajout de hautes fréquences

Ajout de hautes fréquences

Ajout de hautes fréquences

Perlin Worm

Modular Approach

High level of control

Templates with local random changes

Modular approach

• Use manually crafted chunks of level

• Chunks can be connected to each other

• Each chunk may have local random features:

– They should maintain the chunck fundamental
gameplay properties (e.g. traversability)

– They provide some variability

Diablo 3

• Exterior zones :
– static borders, roads, and town placements.
– most of the area in-between is static too,
– chunks of the map in various shapes that are essentially cut out. We then

create pieces to fit those shapes and sizes, a bunch of them for each, and the
game randomly picks which ones to use.

• Exteriors static for the most part :
– Having to search to find where the town/questgivers are just wasn't a fun use

of randomization.
– You also couldn't easily or quickly meet a friend anywhere outside of town

because nothing was ever in the same place.
– And lastly it helps us create a sense of a world that actually exists, the towns

and cities and at least the important points of interest exist in stationary
locations.

• The dungeons, in addition to being random in design and flow, also use
the adventure system to bring in random events and quests.

Diablo 3

Spelunky

Spelunky

• 16 rooms (4*4)

• Room types:

– 0: various, not on solution path

– 1: left, right exit

– 2: left, right, bottom exit

– 3: left, right, top exit

Spelunky algorithm (en gros)

• Start room at random position, top row.

– Select direction randomly

– Select room type to stay connected to previous
room

– If bottom row, end and set blank rooms to 0 type.

• Each room has a template :

– Fixed elements to guarantee solution

– Random elements for variability

Spore

Spore

Spore

Grammars

Describe generation rules

Maintain control over the structure

Generative Grammar

• Symbols

• Rewriting rules

• -> Always respects the rules structure (always
« valid », helpful to encode design pricniples)

[dormans2011]

Mission et Game Space

Graph Grammar

[dormans2011]

Unexplored

[dormans2016]

Unexplored

[dormans2011]

Unexplored

[dormans2011]

Launchpad

[Smith2009 – 2013]

Launchpad

• Generate the level’s rythm from a chosen
structure and density
– Regular (regular beat)

– Swing (short then long)

– Random

• Rythm is then translated to a playable level
using a grammar

• Use a bunch of scoring functions to select the
best level

[Smith2009 – 2013]

Rythm examples

[Smith2009 – 2013]

[Smith2009 – 2013]

Example

From rythm to geometry

[Smith2009 – 2013]

[Smith2009 – 2013]

Whole generator

[Smith2009 – 2013]

Metrics

• Line critic :

[Smith2009 – 2013]

Metrics

• Component Frequency Critic:

– Jump and wait frequencies were defined at the
beginning.

– The generated level may not respect these
frequencies,

– Evaluate the distance between actual and wanted
frequencies.

[Smith2009 – 2013]

Metrics

• Linéarity :

– Different from line critic. Evaluates if the level can
be fitted to a line

[Smith2009 – 2013]

Metrics

• Leniency (difficulty) :

[Smith2009 – 2013]

Markov chains

Extract a probabilist structure

Markov Chain

[Snodgrass2014]

[Snodgrass2014]

Search based generation

Explore the levels space

It’s all about the score function

Agent based scoring

Mixed initiative, agent based

Evolutionary Algorithms

Genetic Algorithms

Genetic Algorithms

• Sorry it’s a bit long

• But it’s bread and butter of PCG research☺

Solution encoding

– Phénotype : a game level. What we actually want to
be gnereated at the end.

– Genotype (or chromosome) : abstraction of a
phenotype, using n variables. Thus a point in a n
dimensions space. We search this space for a good
solutions

– Gène (or locus): One variable of a chromosome

– Allele: possible value for a gene.

– Encoding : phenotype to genotype

– Decoding : genotype to phenotype. Maximum of 1
phenotype per genotype.

Fitness Function

– Evluates the quality of a chromosome

– Most often :

• Decode chromosome

• Evaluate phenotype (ai plays the level, etc…)

– We want to maximize this fitness function (find
the best solution)

Population

– Set of solutions currently found (individuals)

– Constant size from loop to loop

• We ar going to add, modify and delete individuals.

– Population’s diversity : are individuals different
from each other ?

• Number of different genotypes

• Number of different fitness values

• Entropy

Entropy

• How much is a system predictable
• X random variable, values {xi,…,xn}

• Entropy H(X) =

• Propriétés :
– log(x) : [0,1] -> [-inf,0]
– x*log(x)

• if x = 0 : entropy is 0 (event never happens, we know it will not)
• if x = 1 : entropy is 0 (event happens all the time, we know it will)

– Entropy is maximal when P(X) uniform, i.e. P(xi) = 1/n
• All event have the same probability, we cannot make any prediction,

we know nothing.

Parents Selection

– Some individuals are selected for next generation.

– Depends on individual fitness and selection
probability.

– « Bad » inbdividuals also have a chance to be
selected :

• Maintains the population diversity

• Allows to find better solution that were not promising
at first sight (Avoid local maximum)

Operators

– Create new individuals from old ones

– Mutate : unary operator. Random, unbiased
modification of parent genotype to make a new one.

• Unbiased : if you mutation operator tries to fix what you
may consider a solution weakness, it’s not a mutation
operator (narrows the solution space instead of widening it)

– Crossover : binary operator : make to childrens by
mixing two parents.

• Allows to combine good properties of different solution in a
single one

Ex: Binary Mutation

Ex: Binary Crossover

Ex: Binary Crossover

Time to kill individuals !

– Population needs to keep a constant size

– Use quality and age of individuals :

• Ex1: sort by fitness, keep n best individuals

• Ex2: make the same but only with childrens (kill all the
parents)

Stop condition

– The maximum allowed CPU time elapses.

– The total number of fitness evaluations reaches a
given limit.

– The fitness improvement remains under a
threshold value for a given period of time (i.e., for
a number of generations or fitness evaluations).

– The population diversity drops under a given
threshold.

Multi objective

– Multiple fitness functions:

• Many ways to evaluate a solution

• No apriori weight to combine functions (as if they were
mixed in a single one)

– Dominance: individual A dominates B if A has a
score at least as good as B for all fitness functions,
and at least one of them, A is better than B.

– Pareto front : set of solution that are dominated
by no one

Example : Togelius2010

Genotype

• Bases : polar coordinates 2D theta,phi (angle & distance)
• Mineral : x,y
• Gas : x,y
• Blocking zones:

– Start X,y
– P(left turn)
– P(right turn)
– P(gap)

• 3 bases, 4 minerals, 4 gas, 5 blocking zones
– 3*2 + 4*2 + 4*2 + 5*5 = 47 floats

Phenotype

• Map of 64*64 tiles

• Bases

– Forces maximal spread : for instance, if 3 bases,
120° between each other

– Distances between 0.5 and 1.0 size of map

– If base is outside map, orthogonal projection on
side of map

• Generates more maps with bases on the side of the
map, which is a feature.

Phenotype

• Blocking zones

– Starts in x,y

– Adds new blocking tiles while not in a blocking
zone, following probabilities

– If 5 times straight, forces a turn

– To have only one phenotype per genotype :
always uses the same seed

Fitness function

• Playability :
– Needs to be able to build your base (minimal space) and

attack enemies

• Balancing :
– If players have the same level, they must have the same

chances to win

• Skill difference :
– Better tactic need to win more often
– A map should let players use different tactics

• Map’s “beauty”
– Maps should not look like other maps, be too symmetrical

or too empty.

Fitness function

• fb0: Base space

– For playability, some space for other buildings is
required next to the base. Out of the 5*5 cells
surrounding a base, the base space is defined as
the fraction of these cells that are passable and
reachable within 5 steps (using A*) from the base.
This fitness value is the mean of the base space of
all bases.

Fitness function

• fb1: Base distance

– The measure makes sure that the bases are not too
easy to reach from each other so that the players have
the opportunity to develop their base before clashing
with the others. It contributes to playability and skill
differentiation as the game is more difficult for all
players when starting close to each other.

– Fb1 is the minimum distance between any two bases,
divided by the sum of the map’s width and height

Fitness function

• fp1: Choke points.
– We consider the average narrowest gap on all paths between

bases. The narrowest gap along a path is calculated by first
calculating a shortest path and then traversing along the path
and counting the width of the path at each cell.

– Path width is calculated through determining whether the path
is currently moving horizontally or vertically through
comparison with the previous cell in the path, and searching
orthogonally to the path direction until either an impassable
cell or the border of the map is encountered.

– Choke points contribute to skill differentiation in that a good
player will be able to exploit such points through using a smaller
defending force to stop a larger attacking force, which cannot
use the strength of its numbers as they have to pass
sequentially through the narrow

Algorithm

• Multi Objective GA (SMS-EMOA : Multiobjective selection

based on dominated hypervolume)

• 50000 epochs

• 20 individuals

• crossover/mutation : floating point operators
that simulate binary ones :

– SBX (Simulated Binary crossover)

– PM (Power Mutation)

Result

Generating game space

Specific algorithms
focusing on game space

Cellular Automata

Emergent Space

Cellular Automata

• Grid of cells

• State of each cell at t+1 calculated from

– It’s state at t

– It’s neighbours states at t

Game of Life

Generate Caves

Fractal Brownian Noise

Maybe your noise will not be brownian but just fractal.
Not a big deal if your level looks great

Diamond Square Algorithm

Diamond Square Algorithm

Diamond Square Algorithm

WFC

